


Adobe Apollo® for Flex™: Pocket Guide
by Mike Chambers, Robert L. Dixon, and Jeff Swartz

Copyright © 2007 Adobe Systems, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss
Production Editor: Philip Dangler
Indexer: Joe Wizda

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and

Jessamyn Read

Printing History:
March 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference/Pocket
Guide series designations, Adobe Apollo for Flex, the image of a bengal
falcon, and related trade dress are trademarks of O’Reilly Media, Inc.

This work is licensed under the Creative Commons Attribution-
ShareAlike 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105,
USA.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51391-7
ISBN-13: 978-0-596-51391-7
[C]

,copyright.19357  Page ii  Friday, February 23, 2007  2:57 PM

http://creativecommons.org/licenses/by-sa/2.5/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This excerpt is protected by copyright law.  It is your 
responsibility to obtain permissions necessary for any 

proposed use of this material. Please direct your 
inquiries to permissions@oreilly.com. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:permissions@oreilly.com


CHAPTER 4CHAPTER 4

Using the File System API
Apollo provides a file I/O API that lets applications read and
write files and directories on the user’s computer. The file I/O
API includes the following functionality:

• Create and delete files and directories

• Copy and move files and directories

• List the contents of directories

• Get system information on files and directories

• Read and write binary files

• Read and write text files

• Serialize and deserialize ActionScript objects

The low-level functionality for working with the file system is
accessed via ActionScript. The Flex framework for Apollo
includes components for working with files and directories,
but these are graphical components for navigating the file
system and selecting files and directories. They do not pro-
vide direct access to the more fundamental file I/O
operations.

In addition to the information in this chapter, see the
examples presented in “Working with the File System” in
Chapter 5. Those examples illustrate many of the concepts
described in this chapter, and they provide working MXML
code that you can test, using Flex Builder or the Apollo SDK.
56



Security Model
Apollo will eventually provide a complete security model for
managing access to local resources, such as the file system.
However, this security model has not been implemented in
the Apollo Alpha 1 build.

It is important to remember that Apollo applications are
installed to and run from the user’s computer. Apollo appli-
cations have a different security context and security model
than those of web browsers. Because of this, the same rules
that apply to downloading and running other applications
also apply to downloading and running Apollo applications.
Users should download and install applications only from
trusted sources.

Accessing Files and Directories
Apollo applications can run on multiple platforms, includ-
ing Windows and Mac OS. The Apollo file API uses plat-
form-neutral code syntax so you don’t have to write any OS-
specific code.

For example, the way you represent a path to a file differs
between Mac OS and Windows:

• A typical file path on Mac OS is /Users/joe/Documents/
test.txt

• A typical file path on Windows is C:\Documents and
Settings\joe\My Documents\test.txt

However, you can use exactly the same Apollo components,
classes, methods, and properties to access files in either oper-
ating system.

An ActionScript File object is a pointer to a file or directory.
The File class includes the static property
documentsDirectory, which contains a File object that points
to the user’s documents directory. This is the My Documents
Accessing Files and Directories | 57



directory on Windows, and it is the Documents subdirectory
of the user directory on Mac OS, as illustrated in the
following code:

trace(File.documentsDirectory.nativePath)
     // On Windows:
     //       C:\Documents and Settings\joe\MyDocuments
     // On Mac OS:  /Users/joe/Documents

Once you point a File object to a directory, you can use the
resolve( ) method to modify it to point to a file or subdirec-
tory within that directory (or within a subdirectory). For
example, the following code creates an Apollo Test subdirec-
tory of the user’s documents directory:

var newDir:File = File.documentsDirectory;
newDir = newDir.resolve("ApolloTest");
newDir.createDirectory( );

A File object can point to either a file or a directory. Also, a
File object may point to a file or directory that does not
exist, as in the previous example. This lets you point a File
object to a directory location that you wish to create.

File Class Properties for Accessing Common
Directory Locations
The File class includes the following static properties, which
point to commonly used directory locations:

Property Description

File.appStorageDirectory Each installed Apollo application is given a
unique application storage directory. This is a
good place to store files that the application
may want to maintain but that the user will
probably need not see. This may include log
files, cache files, and preferences files.

File.appResourceDirectory The application’s install directory.

File.currentDirectory This is the directory from which the file was
launched. You may use this property to resolve
the file path of any command-line parameters
that were passed to the application.

File.desktopDirectory This is the user’s desktop directory.
58 | Chapter 4: Using the File System API



The url and nativePath Properties of a File Object
The url property of a File object returns the location of a file
or folder as a platform-independent string that begins with a
URL scheme, such as file, as in the following:

var directory:File = File.userDirectory;
trace(directory.url)
  // on Windows: file:///C:/Documents%20and%20Settings
  // on Mac OS: file:///Users

whereas the nativePath property of a File object returns a
string that is unique to Windows or Mac OS. For example,
you can use this code to point to a specific file on a Win-
dows computer:

var file:File = new File( );
file.nativePath = "c:/ApolloTest/surprise.txt";

However, it is generally better to start with one of the static
properties listed in the table in the previous section (such as
the File.appStorageDirectory)—that point to known direc-
tories on the operating system—and then use the resolve( )
method to create to a relative path based on that directory, as
in this code:

var logFile:File = File.appStorageDirectory;
logFile = logFile.resolve("log.txt");

Use the application store directory to store files that you
want your application to be able to access in the future but
that the end user may not need to know about. For instance,
this is a good place to store preferences files.

File.documentsDirectory This is the My Documents directory on
Windows, and the Documents subdirectory of
the user directory on Mac OS.

File.userDirectory This is the user’s home directory.
For example, on Mac OS, it is the Users/
username directory, and on Windows it is
typically c:\\Document and Settings\
username.

Property Description
Accessing Files and Directories | 59



URI Schemes
A URI scheme is specified at the beginning of a URL, such as
file in the following example:

file:///c:/ApolloTest/test.txt

In addition to the file URI scheme, Apollo supports the new
URI schemes app-storage and app-resource.

app-storage

Identifies the application storage directory, as shown in the
following example:

var logFile:File = File.appStorageDirectory;
logFile = logFile.resolve("log.txt");
trace(logFile.url); // app-storage:/log.txt

app-resource

Identifies this application’s installation folder, as in the
following:

var installDir:File = new File( );
installDir.url = "app-resource:/";
installDir = installDir.resolve("HelloWorld-app.xml");
trace(installDir.url); // app-resource:/HelloWorld-app.xml

file

The url property of other File object returns a standard file
URL scheme:

var file:File = File.documentsDirectory;
file = file.resolve("ApolloTest/test.txt");
trace(file.url);
  // On Windows:
  // file:///C:/Documents%20and %20Settings/ ... /test.txt
  // On Mac OS:
  // file:///Users/userName/Documents/ ... /test.txt
60 | Chapter 4: Using the File System API



Asynchronous and Synchronous Versions
of Methods
Some of the methods of the File class (such as File.
copyFile( ) and File.copyFileAsync( )) and of the FileStream
class have both synchronous and asynchronous versions.

The synchronous methods don’t relinquish control until the
file operation is complete. The asynchronous methods run in
the background, allowing other ActionScript processes to
take place at the same time. When the asynchronous file
operation finishes, an event is dispatched to notify listeners
that it is done.

Here’s an example of copying a file using the synchronous
copyTo( ) method:

var file1:File = File.documentsDirectory.
resolve("ApolloTest/test.txt");
var file2:File = File.documentsDirectory.
resolve("ApolloTest/copy of test.txt");
file1.copyTo(file2);
trace("Not output until the file is copied.");

Here’s an example of copying a file using the asynchronous
copyToAsync( ) method:

var file1:File = File.documentsDirectory.
resolve("ApolloTest/test.txt");
var file2:File = File.documentsDirectory.
resolve("ApolloTest/copy of test.txt");
file1.copyToAsync(file2);

file1.addEventListener(Event.COMPLETE, completeHandler);
trace("This line executes before the complete event.");
trace("So does this line.");

private function completeHandler(event:Event):void {
  trace("Done.");
}

Asynchronous and Synchronous Versions of Methods | 61



The following table lists the asynchronous methods of the
File class (all of which have synchronous counterparts) and
the events that can fire after the method is called:

When you open a file, use either the open( ) or openAsync( )
method of the FileStream object. The first opens the file for
synchronous operations, and the second opens the file for
asynchronous operations. For more information, see “The
open( ) and openAsync( ) Methods” later in this chapter.

Use asynchronous methods whenever you want to make sure
that other essential ActionScript-driven processes—such as
progress bar animation—continue while the file operations
take place. For example, you could use the open( ) (synchro-
nous) method of a FileStream object if you are going to write
a small file (1 MB or less) and use the openAsync( ) method
when writing larger files, or when the file size is unknown.

For more information on asynchronous methods in gen-
eral, see the “Handling Events” chapter in Programming
ActionScript 3.0, which is available at:

http://livedocs.macromedia.com/flex/2/docs/Part5_ProgAS.html

Reading Directory Contents
The File.listDirectory( ) method returns an array listing of
File objects that represent the files and directories contained
within the specified directory. For example, the following
code lists the contents of the desktop directory:

Asynchronous File method Events

copyToAsync( ) complete, ioError

deleteDirectoryAsync( ) complete, ioError

deleteFileAsync( ) complete, ioError

listDirectoryAsync( ) directoryListing, ioError

moveToAsync( ) complete, ioError

moveToTrashAsync( ) complete, ioError
62 | Chapter 4: Using the File System API

http://livedocs.macromedia.com/flex/2/docs/Part5_ProgAS.html


var directory:File = File.desktopDirectory;
var contents:Array = directory.listDirectory( );
for (var i:uint = 0; i < contents.length; i++) {
    if (contents[i].isDirectory) {
        trace(contents[i].name);
    } else {
        trace(contents[i].name,
        contents[i].size,
        "bytes");
    }
}

The File.listDirectory( ) method returns only the root level
files and directories in a directory. It does not recursively
search through subdirectories for their contents. You can, of
course, write code to traverse subdirectories, though if you
do so, you might want to use the File.listDirectoryAsync( )
method so that other ActionScript-driven processes can con-
tinue while the directory listings are being compiled.

Also see “Getting a Directory Listing” in Chapter 5.

Getting File Information
The File class includes a number of properties that contain
information about a file or directory.

Property Description

exists States whether the file or directory exists. This is worth checking,
for example, before you attempt to read, write, copy, or move a file.

isDirectory States whether the File object points to a directory (true) or a
file (false). You will want to check this before attempting
directory-specific operations (such as the listDirectory( )
method) or attempting file-specific operations (such as reading a
file).

isHidden States whether the file or directory is hidden.

nativePath Notes the operating system-specific path to the file or directory.

parent Notes the parent directory of the File instance.

url Notes the operating system-independent path to the file or
directory.
Getting File Information | 63



The File class also inherits the following useful properties
from the FileReference class:

Copying and Moving Files and
Directories
The File.copyTo( ) and File.moveTo( ) methods copy or move
a file or directory to a specified new location. For example, the
following code copies the test.txt file in the Apollo Test subdi-
rectory of the user’s documents directory to the User Data
subdirectory of the application storage directory:

var file1:File = File.documentsDirectory.resolve("Apollo
Test/test.txt");
var destination:File = File.appStorageDirectory.
resolve("User Data");
destination.createDirectory( );
var file2:File = destination.resolve("test.txt");
file1.copyTo(file2);

Note the call to the File.createDirectory( ) method, which
ensures that the destination directory exists.

The following code moves the Apollo Test 1 subdirectory of
the user’s documents directory to the Apollo Test 2 subdirec-
tory (effectively renaming the directory):

var dir1:File = File.documentsDirectory;
dir1 = dir1.resolve("Apollo Test 1");
var dir2:File = File.documentsDirectory;
dir2 = dir2.resolve("Apollo Test 2");

Property Description

creationDate The date the file or folder was created.

modificationDate The date when the file was last modified.

name The file or folder name.

size The size of the file, in bytes.
64 | Chapter 4: Using the File System API



You might want to use the asynchronous versions of these
methods, File.copyToAsync( ) and File.moveToAsync( ), if the
copy or move operation could take a long time.

Each of these methods includes a clobber parameter, which
you can set to true to have the operation overwrite existing
files. By default, this parameter is set to false.

Creating Files and Directories
The File.createTempFile( ) and File.createTempDirectory( )
static methods of the File class let you create a temporary
file or directory. Apollo ensures that the temporary file or
directory created by these methods is new and unique. For
example, the following code creates a temporary file:

var bufferStorage:File = File.createTempFile( );

Temporary files and directories are not automatically deleted
when you close an Apollo application. You will generally
want to delete temporary files and directories before closing
the application. See the next section, “Deleting Files and
Directories,” for more details.

The File.createDirectory( ) method lets you create a direc-
tory in the location specified by the File object:

var directory = File.documentsDirectory;
directory = directory.resolve("ApolloTest");

When you open a FileStream object with write capabilities
then directories are created automatically, if needed. For
more information about FileStream objects, see “Reading
and Writing Files” later in this chapter.

Deleting Files and Directories
The File.deleteFile( ) method permanently deletes a file,
and the File.deleteDirectory( ) method permanently deletes
Deleting Files and Directories | 65



a directory. The File.moveToTrash( ) method lets you move a
file or directory to the system trash.

Each of these methods also has an asynchronous counterpart.

Reading and Writing Files
The FileStream class provides methods that let your applica-
tion read and write files.

Here’s the general process for reading and writing to a file:

1. Set up a File object that points to the file you want to
read or write.

For details, see “Accessing Files and Directories,” earlier
in this chapter.

2. Instantiate a FileStream object—for example:
var stream:FileStream = new FileStream( );.

3. Call the FileStream.open( ) or FileStream.openAsync( )
method, passing in the File object as the file parameter
and passing an appropriate file mode as the fileMode
parameter. For example:

stream.open(file, FileMode.READ);

For more information, see “File Open Modes” later in
this chapter.

4. If you called the FileStream.openAsync( ) method, set up
the appropriate event listener functions.

For more information, see “The open( ) and openAsync( )
Methods,” next.

5. Call the appropriate read and write method for your
data.

For more information, see “Read and Write Methods”
later in this chapter

6. Close the file, using the FileStream.close( ) method. For
example:

stream.close( );
66 | Chapter 4: Using the File System API



Steps 3, 4, and 5 are described in more detail the sections
that follow. First, here is a sample of code for reading UTF-8
text from a file synchronously:

var file:File = File.appStorageDirectory;
file = file.resolve("settings.xml");
var stream:FileStream = new FileStream( );
stream.open(file, FileMode.READ);
var data:String = stream.readUTFBytes(stream.
bytesAvailable);
stream.close( );

Here is some code that reads the same data asynchronously:

var file:File = File.appStorageDirectory;
file = file.resolve("settings.xml");
var stream:FileStream = new FileStream( );
stream.openAsync(file, FileMode.READ);
stream.addEventListener(Event.COMPLETE, readData);
var data:String;

private function readData(event:Event):void {
  data = stream.readUTFBytes(stream.bytesAvailable);
  stream.close( );
}

The open( ) and openAsync( ) Methods
Your application needs to open a file before it can read from
or write to the file.

When you open a file with the FileStream.openAsync( )
method, the file is opened for asynchronous operations, and
you’ve registered event listeners to monitor progress.

The FileStream.open( ) method opens the file for synchro-
nous operations. If your application opens the file using this
synchronous method, all subsequent calls to methods that
read or write to the file will be done synchronously as well.
In the following example, each of the calls to stream.open( ),
stream.writeUTFBytes( ), and stream.close( ) will complete
before the next call is made.

var newFile:File = File.documentsDirectory;
file = file.resolve("ApolloTest/test.txt");
Reading and Writing Files | 67



var stream:FileStream = new FileStream( )
stream.open(file, FileMode.WRITE);
stream.writeUTFBytes("This is some sample text.");
stream.close( );

The advantage of opening a file for synchronous operations
is that you can write less code to complete a task. The disad-
vantage is that execution of other ActionScript code can be
delayed if the file operations take a while. As a result, if you
are working with large files or opening files that are shared
on slow networks, you should consider using the
FileStream.openAsync( ) method instead.

When you use the openAsync( ) method, the following pro-
cesses are all handled asynchronously:

Closing the file
The FileStream object dispatches a close event when the
file is closed.

Reading data into the read buffer
The FileStream object dispatches progress events as data
is read, and it dispatches a complete event once all the
data is read. However, once data is read, calling a read
method (such as readBytes( )) to read data is a synchro-
nous process.

I/O errors
The FileStream object dispatches an ioError event upon
encountering an error. This may occur for a number of
reasons, such as attempting to open a file that doesn’t
exist or attempting to write to a file that is locked. How-
ever, some errors, such as attempting to read from a file
that has not been opened, throw exceptions (rather than
dispatch ioError events) because the Apollo runtime can
detect the error condition instantly.

Before calling the FileStream.openAsync( ) method, your
application should set up event listener functions to handle
those events in which it is interested.
68 | Chapter 4: Using the File System API



The following example opens a file in asynchronous read
mode. After the file has been opened, the complete event will
be dispatched (unless there is an error, in which case the
ioError event will be dispatched instead). The
completeHandler( ) method then calls the FileStream.
readBytes( ) method, which starts reading data from the file
as an array of bytes, in asynchronous mode. When all the
bytes have been read from the file, the complete event will be
dispatched:

var file:File = File.documentsDirectory.
resolve("ApolloTest/test.txt");
var stream:FileStream = new FileStream( );

stream.addEventListener(ProgressEvent.PROGRESS,
progressHandler);
stream.addEventListener(Event.COMPLETE, completeHandler);
stream.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
stream.addEventListener(Event.CLOSE, closeHandler);

stream.openAsync(file, FileMode.READ);

var data:ByteArray = new ByteArray( );

private function progressHandler(event:ProgressEvent):void {
    trace(stream.bytesAvailable, "bytes read.");
}
private function completeHandler(event: Event):void {
    data = stream.readBytes(stream.bytesAvailable);
    stream.close( );
}
private function ioErrorHandler(event:IOErrorEvent):void {
    trace("An I/O error was encountered.");
}
private function closeHandler(event: Event):void {
    trace("File closed.");
}

File Open Modes
The FileStream.open( ) method and FileStream.openAsync( )
method both accept two parameters: the file parameter cor-
responding to the file that you want to open, and the
Reading and Writing Files | 69



fileMode parameter, which is a string defining the capabili-
ties of the FileStream object. The possible values for the
fileMode parameter are defined as constants in the FileMode
class.

For example, the following code opens the file synchro-
nously for write operations, but not for read operations:

stream.open(file, FileMode.WRITE);

Here are the FileMode constants and their meanings:

Read and Write Methods
The FileStream class includes a number of read and write
methods, each corresponding to the format of the data being
read or written. For example, you can use the readUTFBytes( )
and writeUTFBytes( ) methods to read or write an array of
bytes, whereas the readByte( ) and writeByte( ) methods read
or write a single byte at a time. All in all, there are 26 read and
write methods. For details on each, see the description of
these methods in the ActionScript 3.0 Language Reference,
which is distributed with Apollo Alpha 1.

Even though reading and writing text data may seem trivial,
you should consider the encoding of the text in the file. The
readUTFBytes( ) and writeUTFBytes( ) methods provide

FileMode constant Definition

FileMode.APPEND The file is opened in write-only mode, with all written data
appended to the end of the file. Upon opening, any non-
existent file is created.

FileMode.READ The file is opened in read-only mode. The file must exist
(missing files are not created).

FileMode.UPDATE The file is opened in read/write mode, and data can be
written to any position in the file or appended to the end.
Upon opening, any nonexistent file is created.

FileMode.WRITE The file is opened in write-only mode. If the file does not
exist, it will be created. If the file does exist, it will be
overwritten.
70 | Chapter 4: Using the File System API



means to read and write UTF-8–encoded text. The
readMultiByte( ) and writeMultiByte( ) methods let you
specify a different character encoding for the file data. There
are other factors to consider as well. For example, a UTF file
may start with a UTF byte order mark (BOM) character,
which defines the UTF encoding and the byte order (or
“endianness”) of the data.

For more information, see the “Data formats, and choosing
the read and write methods to use” section of the Apollo
Developer’s Guide (http://www.adobe.com/go/apollodocs).

More Information
For examples of reading and writing files, see the following
sections in Chapter 5:

• “Writing a Text File from a String”

• “Reading a Text File into a String”

• “Encoding Bitmap Data into PNG or JPEG Format and
Writing It to the File System”

• “Serializing and De-Serializing ActionScript Objects to
the File System”
Reading and Writing Files | 71

http://www.adobe.com/go/apollodocs



